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Aims  
The central appeal of a RPG, as indicated by the genre's nomenclature, lies in its emphasis on 

the role-playing element. While gameplay mechanics play a significant role in player 

engagement, the most effective method for immersing players in this aspect is through a 

compelling narrative. For instance, embodying a character such as Batman (Batman: Arkham 

Asylum, 2009)[1] involves not only utilizing advanced gadgets but also the overarching mission 

of safeguarding Gotham. Similarly, the experience of being a Witcher (The Witcher 3: Wild 

Hunt, 2015)[2] encompasses both the combat mechanics of wielding a sword and the narrative-

driven goal of protecting people from monstrous threats. Consequently, one of the foundational 

components of a robust RPG is its quest design. 

 

For a narrative to be compelling, it often requires substantial effort and meticulous 

craftsmanship. Current technological capabilities are not yet able to produce content that 

surpasses the intricacies and depth achieved through human effort. However, not all projects 

possess the expansive scope of The Witcher or the extensive resources available to CD Projekt 

Red. For smaller development teams, it may be advantageous to utilize a system capable of 

generating engaging narrative threads with minimal input. It is preferable to have quests with 

substantive story elements, even if they lack the refinement of handcrafted narratives, rather 

than resorting to simplistic tasks such as "Go fetch five non-descript items." 

 

In this project, we aim to introduce a novel solution for Procedural Quest Generation using 

Large Language Models (LLMs). This system is not designed to replace human involvement in 

quest design but to enhance it by reducing the effort required to craft engaging narratives. The 

tool can complement human-crafted main storylines, particularly by generating side quests that 

are narratively rich but don’t require the same level of complexity or asset development as main 

quests. 

Key Features: 

• Procedural Quest Generation using LLMs: Introducing a system that leverages LLMs 

to generate narrative-driven quests with minimal human input, particularly suitable for 

side-quests. 

• Augmentation, not replacement: The tool is designed to support human developers by 

enhancing their ability to create diverse quest narratives efficiently, not to fully replace 

human storytelling. 
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• Adaptability for smaller teams: The system provides a viable solution for smaller 

development teams, enabling them to produce engaging narrative content without the 

extensive resources required by larger AAA titles. 

• Practical limitations considered: Acknowledging that AI-generated stories are less 

effective without the proper development pipeline, the tool is intended primarily for 

supplementary content, like side-quests, rather than intricate main plotlines.  
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Objectives  
1. Design and implement a Procedural Quest Generation (PQG) system using LLMs 

Functional Requirements: 

• Develop an LLM-based quest generation module capable of creating narrative-rich 

quests. 

• Develop a generation pipeline for Non-Playable Characters (including enemies), their 

dialogue trees, and quest relevant items. 

• Ensure modular integration into existing game engines. 

 

2. Enhance the performance of the LLM by implementing local deployment and exploring 

different models 

Functional Requirements: 

• Deploy the model locally to eliminate network dependency. 

• Explore multiple locally deployable LLMs (e.g., Llama, Mistral) to balance model 

complexity and efficiency. 

 

3. Evaluate generated quests for narrative coherence, player engagement, and immersion 

Functional Requirements: 

• Create metrics for measuring coherence, creativity and engagement. 

• Conduct both quantitative and qualitative evaluation. 

• Leverage LangSmith to create a robust and easily iterable pipeline for quantitative 

evaluation. 

 

4. Integrate the PQG system into the game development pipeline as an in-engine tool 

Functional Requirements: 

• Build an intuitive pipeline for the game development team, supporting drag-and-drop 

integration with the core Quest Framework. 
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• Ensure compatibility with major game engines like Unity or Unreal Engine. 

 

5. Optimize workflow for an intuitive and seamless quest deployment process 

Functional Requirements: 

• Develop an interface for adjusting quest generation parameters like the primary prompt, 

quest objectives, characters, settings and rewards. 

• Develop a user-friendly and decoupled framework for the easy generation and iteration of 

generated quests, NPCs, NPC dialogues and quest items.  
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Literature Review  
The application of Procedural Content Generation (PCG) in video games is a well-established 

practice. Prominent examples such as Minecraft (2011)[3], Terraria (2011)[4], and No Man’s Sky 

(2016)[5] demonstrate the centrality of PCG to their core mechanics, creating expansive and 

varied game worlds. Despite the extensive use of PCG for environmental and gameplay 

elements, there is a notable scarcity of procedurally generated narrative content, both in 

practical implementations and academic discourse. This project aims to examine the most 

exemplary instances of PCG in narrative design to address this gap. 

 

First, we will review the existing literature on this topic, followed by an examination of games 

that have practically implemented systems for emergent storytelling. 

 

Existing Literature 

Lima et all. (2022)[6], propose a method for automatically creating video game quests with 

branching storylines. The method uses a combination of Genetic Algorithms and Automated 

Planning to build these quests based on a pre-defined narrative structure. The result is quests 

that are reported to be similar in quality to those designed by human professionals. 

 

The CONAN system, developed by Breault et al. (2021)[7], utilizes a world state to generate 

quests. This world state, specified by the designer, comprises locations, items, and non-player 

characters (NPCs). NPCs possess personality traits that are considered when CONAN generates 

a quest for an NPC, who then proposes it to the player. This mechanism ensures that NPCs with 

pacifist tendencies do not request the player to engage in violent actions. The quests are derived 

from a designer-specified grammar, where literals can be substituted with NPCs, locations, or 

items. 

 

Prins et al. (2023)[8] present an event-driven simulation of an in-game world that includes 

elements such as items, locations, characters, and their memories and desires in StoryWorld. 

Their work aims to address the procedural generation of quests specifically within the RPG 

genre. 

 

Grey et al. (2011)[9] construct their quest engine around believable social agents. These agents 

are designed to have emotions, perform actions, perceive actions performed by others, retain 

memories of these actions, and disseminate information through conversations. The agents' 
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memories and emotions are intended to provide credible motivations for assigning quests. 

Furthermore, memories can influence an agent's emotions, creating lasting emotional impacts 

even after the specific memories have faded. 

 

Al-Nassar et al. (2023)[10] propose a method for generating immersive quests through the 

application of Natural Language Processing (NLP) techniques, leveraging BERT and GPT-2 

models. This approach is demonstrated within the context of the case study game QuestVille. 

The findings suggest that the integration of BERT and GPT-2 holds promise in crafting 

captivating narrative content.  

 

Ashby et al. (2023)[11] amalgamate the capabilities of LLMs with a Knowledge-Graph based 

methodology to devise a comprehensive solution for generating quests and corresponding NPC 

dialogues. Human evaluation corroborates that quests produced through their framework 

approximate the quality of manually crafted quests in aspects including fluency, coherence, 

novelty, and creativity. 

 

Rimworld 

One of the most expansive examples of Procedurally Generated Narrative is a game called 

Rimworld (2013)[12]. It is a science fiction colony simulation game characterized by its 

intelligent AI storyteller. Players begin with three survivors of a shipwreck on a remote planet, 

tasked with managing various aspects of the colonists' well-being, including their moods, needs, 

injuries, illnesses, and addictions. As a story generator, RimWorld is designed to co-author 

narratives that are tragic, twisted, and triumphant, encompassing themes such as imprisoned 

pirates, desperate colonists, starvation, and survival. The game employs an AI storyteller to 

control random events, thereby shaping each unique narrative experience. 
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Fig 1.1: Combat in Rimworld 

 

Strengths: 

• AI-driven storytelling: The AI adapts to player actions, creating highly personalized, 

emergent stories. 

• Dynamic narrative flow: Random events and AI management ensure that no two 

narratives are the same. 

 

Limitations: 

• Limited narrative depth: While RimWorld excels at generating emergent short-term 

stories, it lacks the ability to craft complex, overarching narratives with long-term 

coherence. 

 

Comparison with our system: 

Our LLM-based system aims to surpass RimWorld’s short-term emergent narratives by 

generating more structured, cohesive quests with both short-term and long-term narrative arcs. 

The use of LLMs enables deeper narrative complexity, while still allowing for dynamic 

interactions with the world and NPCs. 
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Middle-earth: Shadow of Mordor 

Perhaps the most influential and well-known example of a system for emergent storytelling is 

found in the action-adventure game, Middle-earth: Shadow of Mordor (2014)[13]. 

 

Termed the Nemesis System, the AI storyteller in Middle-earth: Shadow of Mordor employs the 

game’s mechanics in a complex and highly detailed manner to generate diverse narratives. This 

system allows players to determine their own paths and outcomes, while simultaneously 

crafting smaller stories within the overarching narrative. 

 

The game is based on J. R. R. Tolkien’s seminal work, The Lord of the Rings. The overarching 

narrative centers on the protagonist, Talion, a human warrior endowed with mystical powers, 

who battles against the dark forces of Sauron and his army of orcs. The orcs constitute a crucial 

component of the narrative, which the Nemesis System leverages to generate dynamic and 

personalized stories. 

 

The Nemesis System orchestrates the appearance and evolution of orcs throughout the 

gameplay loop by managing their hierarchical structure within the game, akin to the traditional 

boss lists found in many games. However, unlike static boss hierarchies, the player's 

interactions and experiences with these NPCs drive their development in diverse and dynamic 

ways. 

 

For instance, if a player is defeated by a non-descript orc minion, the Nemesis System promotes 

the orc to the rank of "Captain." This promotion not only grants the orc stat boosts but also a 

unique title. When the player encounters this orc again, they are likely to be met with taunts. If 

the player is defeated again, the orc continues to grow stronger, advancing further up the ranks 

and becoming increasingly difficult to defeat in subsequent encounters. 

 

Mark Brown from Game Maker’s Toolkit[14] provides a comprehensive video offering an 

overview of the system, while Magnusson et al. (2022)[15] contribute a scholarly paper 

meticulously explaining the operational mechanisms of the system. 
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Fig 1.2: Orc hierarchy in Middle-earth: Shadow of Mordor 

 

Strengths: 

• Dynamic character development: Orcs evolve based on player interactions, creating 

personalized storylines unique to each playthrough. 

• Player-driven narratives: The system directly responds to player actions, giving players 

the agency to shape their own stories. 

 

Limitations: 

• Limited to NPC hierarchy: The Nemesis System focuses primarily on NPC rivalries, 

limiting its narrative potential to that specific domain. 

 

Comparison with our system: 

Our LLM-driven system extends beyond NPC rivalries to generate a broader range of narrative 

content, including side-quests, character development, and world-building. While the Nemesis 

System is innovative in NPC progression, our system provides a more comprehensive 

storytelling solution, generating quests that incorporate dynamic characters, world events, and 

player actions. 

 



 

 

13 

 

Wildermyth 

Wildermyth (2019)[16] is a character-driven, procedurally-generated tactical RPG, serving as a 

great example for the aspirations of our proposed solution. In contrast to prior instances where 

emergent storytelling is facilitated through sophisticated systemic design, Wildermyth adopts a 

distinct approach by employing a system primarily dedicated to narrative generation. Notably, 

the system prioritizes the development of character arcs for the protagonists, colloquially 

referred to as "heroes," within the game. 

 

The characters in Wildermyth initially possess rudimentary personality traits and undergo 

character arcs that unfold organically as the game progresses. Throughout gameplay, events 

occur based on a predetermined list curated by the developers. These events are algorithmically 

selected, with careful consideration given to the prevailing circumstances and the available 

heroes. Subsequently, the personalities of the heroes imbue these events with distinct nuances, 

adding a layer of individualized expression to the unfolding narrative. 

 

The event selection process adheres to a set of straightforward rules, which involve assigning 

priorities and weights to each event. Events are not duplicated within a single game session, and 

their respective weights are subject to adjustment based on their occurrence in the preceding 

game session. 

 

Subsequently, the selected event is enacted. The event text is crafted with branching narratives, 

allowing for varied delivery of lines contingent upon the involved actors. 

While this system offers significant flexibility in crafting character arcs, the development team 

encountered a notable challenge in devising an overarching storyline. To address this issue, they 

opted for a workaround strategy, which involved compiling a curated list of authored main 

plotlines spanning 3-5 chapters. These plotlines feature designated antagonists and situational 

contexts designed to furnish the overarching struggle with purpose and coherence. 

 

The developer expounds upon the intricacies of the system at the Procedural Games 

Conference[17]. 
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Fig 1.3: Limitations in Hero behaviour in Wildermyth 

 

Strengths: 

• Character-driven narratives: Heroes develop distinct character arcs, making the 

storytelling feel personal and unique. 

• Branching events: Events adapt based on the characters involved, adding layers of 

variation. 

 

Limitations: 

• Curated plotlines: While character arcs are procedurally generated, the overall narrative 

is guided by pre-written main plotlines, limiting the system’s generative capabilities. 

 

Comparison with our system: 

While Wildermyth excels at character-driven storytelling, our LLM-based system offers more 

narrative diversity and scope. Our system can generate both character arcs and overarching 

plotlines dynamically, ensuring that each quest is unique and coherent within the broader game 

world, without relying on pre-written main stories. 
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Conclusion 

In comparing the procedural narrative systems reviewed, our proposed LLM-based PQG system 

stands out due to its flexibility, ability to generate both short-term and long-term narratives, and 

seamless integration into game worlds. Unlike systems dependent on predefined structures or 

rules, LLMs offer the potential for dynamic, context-aware storytelling that adapts in real-time 

to player interactions. This opens up new possibilities for emergent gameplay, interactive 

storytelling, and player-driven narratives across diverse game genres. 
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Method and Workplan  
 

Technologies and Resources 

In this project, the large language models (LLMs) utilized include Llama3.1[18], Gemma2[19], 

and Mistral-Nemo[20], with the pipeline primarily developed using Llama3.1. These models 

present several advantages, particularly their open-source nature and capability for local 

deployment. This selection not only reduces costs but also mitigates potential processing delays 

associated with network-dependent operations, thereby ensuring uninterrupted and efficient 

model performance. 

The procedural quest generation pipeline is developed in Python. The project employs 

Ollama[21] and LangChain[22] to create a modular and decoupled pipeline, allowing for seamless 

integration with various LLMs. For quantitative evaluation, LangSmith[23] is utilized, with GPT-

4 Turbo[24] serving as the backend for assessing the pipeline's responses. 

The final product is a package designed for integration with Unity[25], written in C#. The tool 

takes advantage of Unity’s Python Scripting[26] to create a wrapper around the Python-based 

pipeline, which is then made accessible to end users through Unity's Editor scripting[27] 

framework. The foundational Quest Framework was developed based on content from 

GameDev.tv's[28] series of courses on creating a Quest System[29] in Unity. 

Visual Studio[30] and Visual Studio Code[31] were utilized as the primary IDEs. GitHub[32] was 

utilized for version control and source code management. ChatGPT[33] was used for the 

generation of the Evaluation dataset. 

 

Workplan 

A brief overview final workplan that was followed during development is outlined below. The 

sections to follow delve further into the intricacies of the development process. 

 

Phase 1: Initial Research and Planning (1 Iteration) 

1. Quest Design Research and Initial Requirements: 

o Conducted a review of best practices in quest design. 
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o Defined the initial criteria for quest generation, including basic narrative structures 

and various quest objective types. 

2. Technology Exploration and Setup: 

o Established the development environment using Llama3.1 and Ollama. 

o Conducted exploratory experiments with core functionalities to understand the 

basic capabilities of the tools. 

3. Evaluation and Iteration Planning: 

o Refined the agentic framework based on insights from the initial research and 

exploration. 

o Planned the scope and objectives for the next phase of development. 

 

Phase 2: Iterative Design and Implementation (Multiple Iterations) 

Each Iteration: 

1. Design Focused Algorithm Component: 

o Developed specific components of the procedural quest generation algorithm, such 

as quest generation and dialogue tree creation. 

o Integrated the generation pipeline with the quest system to produce the Unity 

package. 

2. Implementation and Testing: 

o Tested the designed tool within Unity. 

o Assessed the functionality of newly implemented components to ensure they 

operate as intended within the system. 

 

Phase 3: Evaluation and Validation (1 Iteration) 

1. Metric Identification: 

o Define appropriate metrics for evaluating the system's performance. 

2. Quantitative Evaluation: 

o Develop an evaluation pipeline using LangChain and LangSmith, where the LLM 

(GPT 4 Turbo) serves as the evaluator. 

o Generate a relevant dataset for evaluation. 

o Deploy the evaluation pipeline on the Quest Generation framework using different 

models, and compare the results. 
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Phase 1: Initial Research and Planning 

The initial phase focused on researching quest design, as it was essential for the system to 

incorporate best practices in order to generate engaging and enjoyable quests. This research 

involved reviewing relevant resources, primarily YouTube videos from channels such as Game 

Maker’s Toolkit[34], Design Doc[35], Extra Credits[36], and Adam Millard – The Architect of 

Games[37], among others. 

Key insights revealed that multi-part questlines, which build upon previous stages, tend to be 

more engaging for players compared to standalone, single-objective quests. Following this, a 

basic development pipeline was established using Llama3.1 and Ollama.  

import ollama 

 

def generate_quest(template_info, questline_example, objective_info): 

    brainstorming_system_prompt = (f"You are a Quest Designer at a 

Game studio.\n" 

    f"You have been tasked with creating compelling Side-Quests for a 

Role-Playing Game.\n" 

    f"The game is set in a Fantasy setting.\n" 

    f"Create engaging and creative questlines that enhance the 

player's experience and provide meaningful content.\n" 

    f"You should create multi-part questlines.\n" 

    f"Try to compelling narratives that deviate from the norms.\n" 

 

    f"\n###\n" 

 

    f"The questline generated should follow the \"template\" given 

below:\n" 

 

    f"{template_info}\n" 

 

    f"Given below is an example. Use it for reference only:\n" 

 

    f"{questline_example}\n" 

 

    f"\n###\n" 
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    f"Each quest of the questline should be of a type otlined in the 

\"quest_objectives\" below:\n" 

 

    f"{objective_info}\n" 

     

    f"\n###\n" 

 

    f"\nGive a name to the questline as a whole.\n" 

 

    f"\nDescribe each quest in the format given:\n" 

    f"Name:\nType:\nGoal:\nDescription:\n") 

 

    response = ollama.chat(model="llama3", messages=[ 

        { 

            "role": "system", 

            "content": brainstorming_system_prompt 

        } 

    ], options={"temperature": 2}) 

 

    return response["message"]["content"] 
Fig 2.1: Initial Quest Generation Agent 

 

Fig 2.1: Initial Output Example 
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The Python pipeline was subsequently dubbed Campbell-Quest. 

After completing the preliminary assessment of quest design requirements and conducting basic 

testing of the agentic framework, significant time was dedicated to enhancing our understanding 

of LangChain through the Udemy course titled "LangChain – Develop LLM Powered 

Applications with LangChain[38]." However, during a subsequent meeting with the project 

supervisor, it was determined that it would be more effective to prioritize the integration of the 

pipeline within Unity in order to begin developing the tool. As a result, further research into 

LangChain was postponed, and Phase 2 begun. 

 

Phase 2: Iterative Design and Implementation 

The first iteration of Phase 2 focused on a straightforward objective: executing a basic print 

function in Python through the Unity Editor. Once this was successfully implemented, attention 

shifted to integrating the Campbell-Quest generation pipeline into Unity. 

 

The pipeline was adjusted to prioritize the creation of one-shot quests instead of multipart 

questlines. This modification aimed to reduce the complexity of the generated quests, thereby 

facilitating a more efficient integration process within Unity. 

 

from .questAgents import quest_brainstormer, quest_refiner, 

quest_formatter 

 

def generate_initial_quest(quest_prompt, objective_info, 

location_info, character_info): 

    initial_generated_quest = 

quest_brainstormer.generate_quest(objective_info, quest_prompt, 

location_info, character_info) 

    return initial_generated_quest 

 

def generate_quest_with_objectives(initial_generated_quest, 

location_info, character_info): 

    quest_with_objectives = 

quest_refiner.define_quest_objectives(initial_generated_quest, 

location_info, character_info) 
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    return quest_with_objectives 

 

def generate_quest_reward(initial_generated_quest, rewards):     

    quest_reward = 

quest_refiner.define_quest_reward(initial_generated_quest, rewards) 

    return quest_reward 

 

def get_formatted_quest(quest, schema): 

    return quest_formatter.format_quest(quest, schema) 

 

def get_formatted_quest_with_rewards(quest, reward, schema): 

    return quest_formatter.format_quest_with_rewards(quest, reward, 

schema) 
Fig 2.3: questGenerator.py 

 

This code defines a modular pipeline for generating and refining quests using agents from the 

questAgents module. Key components include: 

1. generate_initial_quest(): Utilizes the quest_brainstormer to create an initial quest draft 

based on provided prompt, objective, location, and character information. 

2. generate_quest_with_objectives(): Uses the quest_refiner to enhance the quest by 

defining objectives. 

3. generate_quest_reward(): Adds rewards to the quest via the quest_refiner. 

4. get_formatted_quest() and get_formatted_quest_with_rewards(): Employ the 

quest_formatter to format the quest and rewards based on a predefined schema. 

The pipeline enables structured quest generation, refinement, and formatting for use within a 

game development environment. 
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Fig 2.4: Initial Editor Window 

A CampbellEditorWindow script was developed, enabling users to assign the various 

parameters necessary for quest generation. These parameters are then passed to the 

GenerateQuest() function, which executed a Python script interfacing with the quest generation 

pipeline. 

private void GenerateQuest() 

{ 

if (GUILayout.Button("Generate Quest")) 

{ 

 string prompt = 

UtilityLibrary.FormatStringForPython(_questPrompt); 

 string objectives = 

UtilityLibrary.FormatStringForPython(_objectiveInformation); 

 string locations = 

UtilityLibrary.FormatStringForPython(_locationInformation); 

 string characters = 

UtilityLibrary.FormatStringForPython(_characterInformation); 
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 string rewards = 

UtilityLibrary.FormatStringForPython(_rewardInformation); 

 

 string questSchema = UtilityLibrary.LoadSchema("quest"); 

 

 string pythonScript = "import UnityEngine;\n" + 

 "from campbell_quest import quest_generator\n" + 

 "\n" + 

 $"prompt = \"{prompt}\"\n" + 

 $"schema = \"{questSchema}\"\n" + 

 $"objectives = \"{objectives}\"\n" + 

 $"locations = \"{locations}\"\n" + 

 $"characters = \"{characters}\"\n" + 

 $"rewards = \"{rewards}\"\n" + 

 "quest = quest_generator.generate_quest(prompt, schema, 

objectives, locations, characters, rewards)\n" + 

 "print(quest)\n"; 

 

 using StringWriter stringWriter = new StringWriter(); 

 using (Py.GIL()) 

 { 

  dynamic sys = Py.Import("sys"); 

  sys.stdout = new CampbellTextWriter(stringWriter); 

  PythonRunner.RunString(pythonScript); 

 } 

                 

 _generatedQuest = stringWriter.ToString(); 

} 

} 
Fig 2.5: GenerateQuest() 

The subsequent iteration focused on automating the serialization of Quest ScriptableObjects[39] 

from the generated data strings. The Quest object served as a core data class within the quest 

system, responsible for storing and managing quest-related information during gameplay. 

public class QuestGenerator  

{ 
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[System.Serializable] 

public class QuestData 

{ 

            public string name; 

            public string description; 

            public string goal; 

            public List<ObjectiveData> objectives; 

            public List<RewardData> rewards; 

} 

 

[System.Serializable] 

public class ObjectiveData 

{ 

            public string reference; 

            public string description; 

} 

 

[System.Serializable] 

public class RewardData 

{ 

            public int number; 

            public string item; 

} 

 

public static void CreateQuestFromJson(string jsonString, string 

savePath) 

{ 

            QuestData questData = 

JsonConvert.DeserializeObject<QuestData>(jsonString); 

             

            Quest quest = ScriptableObject.CreateInstance<Quest>(); 

             

            quest.QuestDescription = questData.description; 

            quest.QuestGoal = questData.goal; 

 

            foreach (ObjectiveData objective in questData.objectives) 



 

 

25 

 

            { 

                quest.AddObjective(objective.reference, 

objective.description); 

            } 

 

            foreach (RewardData reward in questData.rewards) 

            { 

                InventoryItem item = 

Resources.Load<InventoryItem>(reward.item); 

                if (item != null) 

                { 

                    quest.AddReward(reward.number, item = item); 

                } 

                else 

                { 

                    Debug.LogError($"InventoryItem '{reward.item}' not 

found in Resources."); 

                } 

            } 

             

            if (!Directory.Exists(savePath)) 

            { 

                Directory.CreateDirectory(savePath); 

            } 

 

            string path = savePath + "/" + questData.name + ".asset"; 

            UnityEditor.AssetDatabase.CreateAsset(quest, path); 

            UnityEditor.AssetDatabase.SaveAssets(); 

} 

} 
Fig 2.6: Initial QuestGenerator.cs 

The QuestGenerator class automates the creation of quest assets in Unity using JSON input. It 

defines three key data structures: 

1. QuestData: Stores quest information, including the name, description, goal, objectives, 

and rewards. 
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2. ObjectiveData: Defines individual quest objectives with a reference and description. 

3. RewardData: Specifies rewards with item references and quantities. 

The CreateQuestFromJson method deserializes the JSON into QuestData, creates a Quest 

object, and assigns objectives and rewards by loading assets from Unity's Resources[40]. The 

completed quest is saved as an asset file using Unity's AssetDatabase[41]. This approach 

streamlines procedural quest generation by integrating data-driven content into Unity’s asset 

management system. 

 

With the large language model generation pipeline and its integration with Unity and the Quest 

System successfully implemented, the basic functionality of the quest generation tool was 

completed. This provided a foundation for further system expansion. Consequently, focus 

shifted to developing a Dialogue Generation pipeline for NPCs, a core component of RPGs and 

essential for quest delivery to players. 

The Campbell-Quest package was extended to support the generation of dialogue trees, and the 

CampbellEditorWindow class was modified to include dialogue tree generation, mirroring the 

functionality of the quest generation pipeline. Additionally, a new DialogueGenerator class was 

created to generate dialogue ScriptableObjects. 

Subsequent iterations enhanced the system by incorporating the generation of NPC and item 

prefabs, crucial for the effective implementation of quests. At the conclusion of each iteration, 

the tool underwent testing in Unity, with any identified bugs addressed to ensure the system's 

proper functionality. 

 

Once the core functionality of the pipeline was established, the next step involved refactoring 

the Unity tool to enhance code organization and decoupling. The CampbellEditorWindow was 

restructured into four distinct windows: QuestEditorWindow, DialogueEditorWindow, 

ItemEditorWindow, and NpcEditorWindow. Each window is responsible for exposing the 

necessary parameters of the Campbell-Quest LLM pipeline to the user and managing the 

editor's front-end functionality. 

These windows transmit the relevant information to their corresponding processors—

QuestProcessor, DialogueProcessor, ItemProcessor, and NpcProcessor. The processors 

interface with the Campbell-Quest package and execute the appropriate Python scripts. If the 



 

 

27 

 

generated content meets user approval, it is then forwarded to the QuestGenerator, 

DialogueGenerator, ItemGenerator, and NpcGenerator scripts. These generators handle the 

decoding of the LLM's responses and the serialization of the appropriate ScriptableObjects or 

MonoBehaviour[42] prefab assets. 

 

Fig 2.7: Final Quest Editor Window 
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Fig 2.8: Example Generated Quest 
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Fig 2.9: Final Dialogue Editor Window and Example Generated Dialogue 

 

Phase 3: Evaluation and Validation 

In this phase, a set of rigorous evaluation metrics was established to assess the quality and 

effectiveness of the generated quests. The metrics include: 

• Conciseness: This metric evaluates the quest's ability to communicate essential 

information clearly and succinctly, without unnecessary elaboration. A concise quest 

effectively conveys objectives and instructions in a direct manner. 

• Coherence: This criterion assesses the logical structure and flow of the quest, ensuring 

that it follows a clear and consistent progression. A coherent quest is easy to follow, with 

all narrative elements logically connected. 
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• Relevance: This metric examines the alignment of the quest with the defined parameters, 

ensuring it remains focused on the specified objectives, characters, and locations. A 

relevant quest avoids deviation into unrelated topics. 

• Engagement: Engagement is measured by the quest’s ability to capture and maintain the 

player's interest throughout. An engaging quest should motivate players to progress by 

incorporating compelling objectives, characters, and challenges. 

• Creativity: Creativity assesses the originality and innovation within the quest, 

highlighting the use of unique ideas, solutions, or narrative elements. A creative quest 

presents players with novel and imaginative content. 

• Narrative Complexity: This metric evaluates the depth and richness of the quest’s 

storyline by incorporating multiple elements such as characters, locations, and objectives. 

A quest with high narrative complexity offers a multi-layered and engaging experience 

for the player.  

Following the identification of the relevant metrics, a pipeline for quantitative evaluation was 

developed. This pipeline was designed to systematically assess the generated quests against the 

established metrics, using automated methods to ensure consistency and objectivity in the 

evaluation process. The pipeline leveraged LangChain and LangSmith to create an LLM-based 

evaluation system, allowing for a detailed comparison of quest quality across different models 

and iterations. The generated dataset served as the input for this evaluation, providing a 

structured approach to measuring the system’s performance across the key metrics.  
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import os 

from src.campbell_quest import quest_generator 

from dotenv import load_dotenv 

import time 

 

from openai import RateLimitError 

 

from langchain_openai import ChatOpenAI 

from langsmith.schemas import Example, Run 

from langsmith.evaluation import LangChainStringEvaluator, evaluate 

 

load_dotenv() 

 

def load_json(filename): 

    try: 

        with open(f"{filename}.json", "r") as file: 

            info = file.read() 

            print(f"{filename}.json read successfully.") 

            return info 

    except Exception as e: 

        print(f"An error occurred: {e}") 

 

########################################################## 

#####   Quest Generation 

 

def evaluate_quest_generation_llama(inputs: dict) -> dict:     

    prompt = inputs["prompt"] 

         

    objectives = load_json("example_objectives") 

    locations = inputs["locations"] 

    characters = inputs["characters"] 

     

    quest_schema = load_json("quest_schema") 
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    initial_generated_quest = 

quest_generator.generate_initial_quest(prompt, objectives, locations, 

characters) 

    quest_with_objectives = 

quest_generator.generate_quest_with_objectives(initial_generated_quest

, locations, characters) 

    formatted_quest = 

quest_generator.get_formatted_quest(quest_with_objectives, 

quest_schema)     

     

    return {"quest": formatted_quest} 

         

########################################################## 

#####   Evaluation Calls 

         

def run_evaluation_llama(): 

    dataset_name = "ds-campbell-evaluation-50"       

    evaluators = [run_clarity_evaluator, run_engagement_evaluator, 

run_creativity_evaluator] 

    prefix = "llama" 

     

    evaluate( 

        evaluate_quest_generation_llama, 

        data=dataset_name, 

        evaluators=evaluators, 

        experiment_prefix=prefix 

    ) 

     

########################################################## 

#####   Evaluator Wrappers   

     

def run_clarity_evaluator(root_run: Run, example: Example) -> dict: 

    evaluator = get_clarity_evaluator() 

    run_evaluator = evaluator.as_run_evaluator() 

 

    max_retries = 12 
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    backoff_factor = 2  # Exponential backoff factor 

    initial_delay = 10  # Initial delay in seconds 

 

    for attempt in range(max_retries): 

        try: 

            results = run_evaluator.evaluate_run(root_run, example) 

            return results 

        except RateLimitError as e: 

            if attempt < max_retries - 1:  # Don't delay on the last 

attempt 

                delay = initial_delay * (backoff_factor ** attempt) 

                print(f"RateLimitError encountered. Retrying in 

{delay} seconds...") 

                time.sleep(delay) 

            else: 

                print("Max retries reached. Raising the 

RateLimitError.") 

                raise e  # Re-raise the exception if max retries are 

reached 

             

def run_engagement_evaluator(root_run: Run, example: Example) -> dict: 

    evaluator = get_engagement_evaluator() 

    run_evaluator = evaluator.as_run_evaluator() 

 

    max_retries = 12 

    backoff_factor = 2  # Exponential backoff factor 

    initial_delay = 10  # Initial delay in seconds 

 

    for attempt in range(max_retries): 

        try: 

            results = run_evaluator.evaluate_run(root_run, example) 

            return results 

        except RateLimitError as e: 

            if attempt < max_retries - 1:  # Don't delay on the last 

attempt 

                delay = initial_delay * (backoff_factor ** attempt) 
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                print(f"RateLimitError encountered. Retrying in 

{delay} seconds...") 

                time.sleep(delay) 

            else: 

                print("Max retries reached. Raising the 

RateLimitError.") 

                raise e  # Re-raise the exception if max retries are 

reached 

     

def run_creativity_evaluator(root_run: Run, example: Example) -> dict: 

    evaluator = get_creativity_evaluator() 

    run_evaluator = evaluator.as_run_evaluator() 

 

    max_retries = 12 

    backoff_factor = 2  # Exponential backoff factor 

    initial_delay = 10  # Initial delay in seconds 

 

    for attempt in range(max_retries): 

        try: 

            results = run_evaluator.evaluate_run(root_run, example) 

            return results 

        except RateLimitError as e: 

            if attempt < max_retries - 1:  # Don't delay on the last 

attempt 

                delay = initial_delay * (backoff_factor ** attempt) 

                print(f"RateLimitError encountered. Retrying in 

{delay} seconds...") 

                time.sleep(delay) 

            else: 

                print("Max retries reached. Raising the 

RateLimitError.") 

                raise e  # Re-raise the exception if max retries are 

reached     

     

########################################################## 

#####   Evaluators Setup     
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def get_clarity_evaluator(): 

    criterion = { 

        "conciseness": "Is this response concise, delivering the 

necessary information in a clear and straightforward manner without 

unnecessary elaboration? It should prioritize brevity while ensuring 

that the answer remains complete and informative.", 

        "coherence": "Is this response coherent, logically structured, 

and easy to follow? The information provided should flow naturally, 

with ideas and facts presented in a manner that makes sense as a 

whole, ensuring that the user can easily understand the response." 

    } 

     

    eval_llm = ChatOpenAI(temperature=0.0, model="gpt-4-turbo") 

     

    evaluator = LangChainStringEvaluator( 

        "score_string", 

        config={ 

        "criteria": criterion, 

        "llm": eval_llm 

        }, 

        prepare_data = lambda run, example: { 

                "prediction": run.outputs["quest"], 

                "input": example.inputs 

            }, 

        ) 

     

    return evaluator 

     

def get_engagement_evaluator(): 

    criterion = { 

        "relevance": "Is this response relevant, directly addressing 

the user's query without deviating into unrelated topics. It should 

focus on providing information or solutions that are directly 

applicable to the user's needs or context.", 
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        "engagement": "Is this response engaging, capturing the user's 

interest and maintaining their attention throughout the response. It 

should encourage further interaction or exploration." 

    } 

     

    eval_llm = ChatOpenAI(temperature=0.0, model="gpt-4-turbo") 

     

    evaluator = LangChainStringEvaluator( 

        "score_string", 

        config={ 

        "criteria": criterion, 

        "llm": eval_llm 

        }, 

        prepare_data = lambda run, example: { 

                "prediction": run.outputs["quest"], 

                "input": example.inputs 

            } 

        ) 

     

    return evaluator 

     

def get_creativity_evaluator(): 

    criterion = { 

        "creativity": "Is this response creative, offering unique or 

innovative solutions, ideas, or perspectives that demonstrate 

originality and imagination. It should go beyond conventional or 

expected responses, providing a fresh and interesting take on the 

topic.", 

        "narrative complexity" : "Is this response narratively 

complex, incorporating multiple elements such as characters, 

locations, and objectives in a way that creates a rich and engaging 

story. It should involve various plot points, twists, and interactions 

that enhance the overall narrative experience." 

    } 

     

    eval_llm = ChatOpenAI(temperature=0.0, model="gpt-4-turbo") 
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    evaluator = LangChainStringEvaluator( 

        "score_string", 

        config={ 

        "criteria": criterion, 

        "llm": eval_llm 

        }, 

        prepare_data = lambda run, example: { 

                "prediction": run.outputs["quest"], 

                "input": example.inputs 

            } 

        ) 

     

    return evaluator 

     

if __name__ == "__main__": 

    # Get the absolute path of the current script file 

    script_path = os.path.abspath(__file__) 

 

    # Extract the directory containing the script file 

    script_directory = os.path.dirname(script_path) 

 

    # Change the working directory  

    os.chdir(f"{script_directory}\\sample") 

     

    run_evaluation_llama() 
Fig 2.10: Evaluation Pipeline 

 

1. Quest Generation Process: 

The evaluate_quest_generation_llama function is responsible for generating quests based on 

user-provided inputs, such as prompts, objectives, locations, and characters. The quest 

generation process follows a three-step methodology: 
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1. Initial Quest Generation: The initial quest is produced using the 

quest_generator.generate_initial_quest function, which creates the foundational structure 

of the quest based on a prompt and game-specific elements. 

2. Objective Refinement: The quest is further refined by adding specific objectives through 

the generate_quest_with_objectives function. 

3. Quest Formatting: The final quest is formatted according to a predefined schema, 

ensuring that it adheres to structural requirements for further analysis and evaluation. 

3. Evaluation Pipeline: 

The run_evaluation_llama function orchestrates the evaluation of the generated quests using a 

predefined dataset ("ds-campbell-evaluation-50"). The evaluation is conducted using multiple 

evaluators, including metrics for clarity, engagement, and creativity. This process allows for the 

comparison of different models or iterations of quest generation, providing a systematic 

framework for assessing output quality. 

4. Evaluator Wrappers: 

The evaluation functions, such as run_clarity_evaluator, run_engagement_evaluator, and 

run_creativity_evaluator, serve as wrappers for specific evaluation metrics. These functions 

include mechanisms for handling rate limits from the external API by implementing retry logic 

with exponential backoff. In the event of a RateLimitError, the functions wait for progressively 

longer intervals before attempting to re-run the evaluation. 

5. Evaluator Configuration: 

Each evaluator is configured to assess specific qualitative metrics using LangChain’s LLM 

evaluation capabilities. The three key evaluators are: 

• Clarity Evaluator: Assesses the conciseness and coherence of the generated quests, 

ensuring they are logically structured and easy to follow. 

• Engagement Evaluator: Evaluates whether the quest is engaging and relevant, 

maintaining the player's attention and addressing the intended prompt. 

• Creativity Evaluator: Measures the creativity and narrative complexity of the quest, 

assessing how original and innovative the generated content is, as well as its integration 

of multiple narrative elements. 
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6. Execution and Evaluation: 

The script concludes by setting the working directory and invoking the run_evaluation_llama 

function, which executes the quest generation and evaluation pipeline. This step triggers the 

generation of quests based on the input data and evaluates them according to the defined 

metrics, providing feedback on key aspects of the generated quests. 

In conclusion, this code implements a robust, automated pipeline for the procedural generation 

and evaluation of quests, leveraging LLMs to produce content and evaluate its quality based on 

diverse qualitative metrics. By integrating evaluators focused on clarity, engagement, and 

creativity, the system enables a comprehensive analysis of quest generation performance across 

different models, ensuring the production of high-quality game content.  
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Artefacts  
 

Campbell-Quest Python Package 

The Campbell-Quest is the Python package that functions as the backend for the Procedurally 

Generated Pipeline. It employs LangChain and Ollama to establish a locally deployed agentic 

framework, facilitating the generation of procedural content within a controlled environment. 

The questGenerator class and questAgents module integrates the language model to generate 

various aspects of game quests, including quest descriptions, objectives, and rewards. The code 

is organized into multiple key functions that interact with custom agents defined through the 

LangChain module.  

Main Functions: 

1. generate_initial_quest(quest_prompt, objective_info, location_info, character_info, 

model="llama3.1"): 

   - This function generates an initial version of a quest based on provided input information, 

such as the quest prompt, objectives, location, and character details. 

   - The `quest_brainstormer.generate_quest` function, part of the questAgents module, is 

responsible for generating the quest using the specified language model. 

2. generate_quest_with_objectives(initial_generated_quest, location_info, character_info, 

model="llama3.1"): 

   - This function takes an initial quest, refines it, and defines specific objectives that the player 

will need to complete. It uses location and character information to ensure coherence. 

   - It relies on the `quest_refiner.define_quest_objectives` function to add clear objectives. 

3. generate_quest_reward(initial_generated_quest, rewards, model="llama3.1"): 

   - This function assigns an appropriate reward to the quest based on a predefined list of 

possible rewards. 

   - It uses the `quest_refiner.define_quest_reward` to map a reward to the quest. 

4. get_formatted_quest(quest, schema, model="llama3.1"): 
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   - This function converts a generated quest into a structured format according to a provided 

schema. 

   - The `quest_formatter.format_quest` function is invoked to handle the formatting. 

5. get_formatted_quest_with_rewards(quest, reward, schema, model="llama3.1"): 

   - This function generates a formatted quest with an added "rewards" field, ensuring the quest 

adheres to a specific schema while also including rewards. 

   - The `quest_formatter.format_quest_with_rewards` function is used here. 

 

Use of Language Models and Prompting: 

The code uses a language model through the `ChatOllama` class, which is part of the 

`langchain_community.chat_models` module. The model processes input and generates text-

based outputs for quest generation and formatting tasks. These tasks include: 

- System Prompts: The code defines system-level instructions that provide the AI with 

background context on the game world, setting, or task. 

- User Prompts: These are more specific task-oriented instructions, guiding the AI on how to 

structure its output (e.g., "generate a quest with specific objectives"). 

For example, in `generate_quest()`, the AI is tasked with creating a quest based on input data, 

following both system-wide game design instructions and user-provided constraints (e.g., using 

only specified locations and characters). 

Integration with LangChain: 

The integration with LangChain involves the use of templates 

(`SystemMessagePromptTemplate`, `HumanMessagePromptTemplate`) that allow the 

system and user messages to be structured and passed into the language model. The outputs 

from the language model are then parsed using the `StrOutputParser` class to generate text-

based responses. 

Functions for Specific Quest Generation Aspects: 

1. generate_quest() 

   - This function constructs a prompt where the system provides the AI with detailed 

instructions on generating a quest based on given objectives, locations, and characters. 
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   - It formats the prompt using a system and user template and then passes the input to the 

language model (`ChatOllama`) to receive a quest description. 

2. format_quest() 

   - This function generates a JSON representation of the quest based on a schema and uses a 

model to ensure the output adheres to the provided format. 

3. format_quest_with_rewards() 

   - Similar to `format_quest()`, but it adds a rewards field to the JSON object of the quest. 

4. define_quest_objectives() 

   - This function takes an existing quest and adds a detailed list of objectives. It works with 

character and location data to ensure that the objectives align with the quest context. 

5. define_quest_reward() 

   - This function selects an appropriate reward for a quest from a list of possible rewards based 

on the quest's description and characteristics. 

 

Dialogue Tree Generation: 

Similarly, the dialogueGenerator class and dialogueAgents module is responsible for the 

procedural generation of Dialogue Trees. The central function, `get_dialogues`, initiates the 

process by extracting the required dialogues based on the input quest, characters, and other 

relevant contextual information. These dialogues are structured in a standardized JSON format, 

adhering to a predefined schema. The function then identifies the relevant NPCs involved in the 

interaction and associates each with specific dialogue cues, derived from the quest objectives. 

The system subsequently generates individual dialogue trees for each NPC, incorporating 

templates and logic pertinent to the narrative context of the game. The dialogue trees are 

subsequently refined and validated to ensure they maintain a logical flow and coherence with 

the quest’s storyline. 

Each stage of the dialogue generation process is compartmentalized into distinct functions that 

handle specific tasks: generating context-sensitive dialogue, formatting the dialogue output into 

JSON format, and validating the logical consistency of the conversation flow. These processes 

are governed by strict adherence to game design principles, including conditions such as quest 
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progress, item possession, and narrative triggers, as well as in-game results, such as receiving 

new quests or acquiring items. The system ensures that the dialogue remains functional and 

integrated within the broader game mechanics, thus facilitating both narrative immersion and 

gameplay progression. 

 

Enemy Generation: 

The enemyGenerator class and enemyAgents module is responsible for the procedural 

generation of Enemies and NPCs. The primary function, `get_enemies`, orchestrates the entire 

workflow, generating detailed enemy data based on the quest context and ensuring adherence to 

a predefined schema.  

The `get_enemies` function begins by extracting required enemy encounters from a quest using 

the `enemy_refiner` module, which identifies potential enemy interactions. These are then 

formatted into a structured JSON format, adhering to a specified schema. Each enemy is 

generated based on specific cues and contextual data from the quest, ensuring that the enemies 

are aligned with the narrative objectives. The enemy details are formatted and validated before 

being returned as a list of JSON objects, facilitating easy integration into the game’s design and 

development pipeline. 

Several auxiliary functions handle different aspects of the enemy generation process. For 

instance, `generate_enemy` utilizes AI to dynamically generate unique and contextually 

appropriate enemy names and attributes based on the quest and a template. Meanwhile, 

`get_formatted_required_enemies` and `get_formatted_enemy` ensure that the generated 

enemies adhere to the expected JSON schema, stripping any unnecessary text and outputting 

only valid, structured data. The `get_required_enemies` function analyzes a quest's objectives 

and identifies which encounters necessitate fighting enemies, ensuring that only relevant enemy 

interactions are processed. 

 

Item Generation: 

The itemGenerator class and itemAgents module is responsible for the procedural generation 

of quest relevant items. The workflow begins with the identification of necessary items for a 

given quest, facilitated by the `item_refiner.get_required_items()` function. These items are 

subsequently formatted into a valid JSON schema, ensuring all outputs conform to the requisite 

structure for integration into game development. Each identified item is then further processed 
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according to its type: action items, which are single-use, and equipment, which can be worn or 

wielded by players. Specific generation processes for each item type are employed to produce 

immersive descriptions and attributes, utilizing AI-based brainstorming and refinement. 

The code employs several auxiliary functions tailored to different item types: 

1. generate_action_item(): This function generates unique and compelling descriptions for 

action items, contextualized by the quest and item narrative. It ensures that the items are not 

only consistent with the game's storyline but also enhance the player's experience. Each item is 

formatted according to a predefined template. 

2. generate_equipment(): This function creates descriptions for equipment items, such as 

armor and weapons, and includes the "allowedEquipLocation" field, which specifies where the 

item can be equipped (e.g., helmet, weapon, shield). The equipment is formatted based on a 

given template and integrated within the game’s context. 

3. get_formatted_required_items() and get_formatted_item(): These functions convert the 

generated items into valid JSON outputs, ensuring that the data is structured appropriately and 

adheres to the specified schema. 

4. get_required_items(): This function evaluates the quest to determine the items the player 

must interact with. Each item is classified into categories (e.g., action items, equipment), and 

associated with the appropriate objective type (e.g., "pickup" or "destroy"). 

Each stage of the item generation process is automated, ensuring that the resulting items are 

both narratively cohesive and technically accurate for implementation in game development. 

 

Fig 3.1: Python Package UML Diagram  
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Campbell-Quest Unity Tool 

Quest Generation: 

The tool serves to facilitate the creation and management of quests within the Unity editor. The 

primary component of this system is the `QuestEditorWindow`, which features two principal 

tabs: Context Editor and Quest Editor. The context editor is further subdivided into sections 

addressing quest prompts, objectives, locations, characters, and rewards, thereby streamlining 

the quest creation process. This user interface is designed to empower developers to generate 

quests efficiently and create associated assets with minimal friction. 

 

The `QuestGenerator` class plays a pivotal role in the system by managing the creation of 

quest assets derived from JSON representations. It includes functionality to ascertain the 

existence of pre-existing assets within a specified directory, thereby ensuring that new assets are 

created only when necessary. Each quest comprises essential attributes such as name, 

description, goals, objectives, and rewards, which are encapsulated within `QuestData` and 

`QuestMetadataFormat` classes. This structural design allows for the customization of quests, 

ensuring that they align with the overarching requirements of the game. 

Data serialization within this framework is executed via the Newtonsoft.Json library, which 

allows for the efficient conversion between JSON strings and object instances. This capability is 

integral to managing various quest data formats, enabling straightforward saving, loading, and 

manipulation within the Unity editor. Collectively, this quest editor system significantly 

enhances the Unity development process by providing a structured and user-friendly interface 

for the creation of engaging gameplay experiences, while simultaneously ensuring the efficient 

management of underlying data and assets. 

The `QuestProcessor` class enhances the functionality of the quest editor system by providing 

methods for managing and generating quest data. This class is responsible for handling various 

components of a quest, including prompts, objectives, locations, characters, and rewards, which 

are represented as string fields. The user interface enables the population of these fields with 

sample data from text files, as well as the dynamic display of each component through separate 

methods. A scrolling text area is utilized for each category, allowing for easy input and editing. 

A critical feature of the `QuestProcessor` is its ability to validate the completeness of the quest 

context, ensuring that all necessary fields are filled before generating a quest. Upon validation, 

the class constructs Python scripts that invoke a quest generation algorithm from the 
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`campbell_quest` Python module, ultimately producing a formatted quest. The generated quest 

data, including objectives and rewards, is presented in a structured format, facilitating the 

inclusion of customizable components. The class also employs the Newtonsoft.Json library to 

serialize and deserialize quest data, enabling seamless data management within the Unity editor. 

Furthermore, the `QuestProcessor` class initializes reorderable lists for both objectives and 

rewards, allowing users to modify and organize these elements dynamically. It provides 

methods for displaying quest information, clearing quests, and creating or recreating quest 

assets based on the generated data. This comprehensive management of quest components not 

only streamlines the quest creation process but also ensures that quests are developed in 

accordance with predefined schemas, thereby enhancing the overall efficiency and user 

experience within the Unity environment. Together with the `QuestEditorWindow` and 

`QuestGenerator`, the `QuestProcessor` contributes to a cohesive and efficient system for 

quest management and generation in game development. 

 

Dialogue Generation: 

Similarly, the Dialogue generation pipeline comprises three primary components aimed at 

facilitating dialogue management. The `DialogueEditorWindow` class extends the Unity 

Editor's capabilities by providing a graphical interface for editing dialogue associated with quest 

assets. It employs the `DialogueProcessor` to generate and display dialogues based on the 

metadata of the selected quest. The editor window includes functionality for handling dialogue 

data, allowing users to view, modify, and create dialogue assets stored in a specified directory. 

A toolbar presents dialogue options tied to non-player characters (NPCs), and user interactions 

trigger the generation and saving of dialogue data. 

The `DialogueGenerator` class serves as a utility for creating and managing dialogue assets 

derived from JSON data structures. It includes methods to check for the existence of dialogue 

assets, create new dialogue instances, and process dialogue choices based on player and NPC 

interactions. The generator employs various data structures to manage conditions, actions, and 

the arrangement of dialogue nodes within a visual interface. 

Lastly, the `DialogueData` and `ChoiceData` classes define the structure of dialogue elements 

and player choices, encapsulating essential information such as NPC names, dialogue lines, and 

conditional choices. This structured approach to dialogue management enhances the 

organization, accessibility, and functionality of narrative elements within the Unity 

environment, thereby improving the overall game development process. 
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Npc Generation: 

The core component of the Npc Generation pipeline, `NpcEditorWindow`, facilitates a 

graphical user interface for selecting quest and dialogue assets, enabling users to generate and 

manage NPCs based on the defined quests. The interface employs Unity's Editor GUI for user 

interaction, where it checks for the existence of the necessary assets and displays relevant 

information for editing and saving NPC-related data. 

The `NpcProcessor` class orchestrates the generation of NPCs by processing quest metadata 

and utilizing the Python pipeline to generate enemy data formatted in JSON. It incorporates 

methods for generating enemies, clearing lists of generated enemies, and creating or recreating 

NPC assets based on the dialogue provided.  

Complementing this functionality, the `NpcGenerator` class manages the creation of NPC 

prefabs and associates them with various components essential for gameplay, such as quest 

handling, dialogue interaction, and combat mechanics. This class ensures that each NPC is 

properly configured with necessary attributes, including their dialogue options and quest-related 

functionalities, enhancing the narrative depth and interactivity within the game. 

 

Item Generation: 

The core component of the Item Generation pipeline, `ItemEditorWindow`, enables users to 

select a quest asset and generate items derived from the corresponding quest data. This interface 

allows for the display, editing, and saving of item attributes. 

The `ItemGenerator` class plays a pivotal role in creating item assets from JSON 

representations. It verifies the existence of item assets and orchestrates the creation of 

associated pickup objects and item data, thereby ensuring that the game environment remains 

consistent with the designed quest structure. The `ItemProcessor` class further complements 

this functionality by processing the item generation from formatted quest data, providing 

methods to display item information, clear generated items, and manage asset creation or 

recreation. 

This extension offers an intuitive graphical user interface, utilizing Unity's Editor GUI to enable 

users to modify item attributes such as name, description, and type. The inclusion of asset 
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management features allows for efficient organization and storage of item assets within the 

designated directories.  
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Evaluation  
 

 

Fig 4.1: Evaluation Results – Metric Scores 

Results: 

1. Conciseness-Coherence Scores: 

o Llama3.1: 8.82 

o Gemma2: 9.06 

o Mistral-Nemo: 8.90 

Gemma2 has the highest score for conciseness and coherence, indicating it provides the most 

coherent and well-organized output. Llama3.1 and Mistral-Nemo are close but slightly lower 

in this aspect. 

2. Creativity-Narrative Complexity Scores: 

o Llama3.1: 3.96 

o Gemma2: 5.75 

o Mistral-Nemo: 6.98 
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Mistral-Nemo shows the highest creativity and narrative complexity, suggesting it generates 

the most intricate and imaginative narratives, followed by Gemma2 and then Llama3.1. 

3. Relevance-Engagement Scores: 

o Llama3.1: 8.73 

o Gemma2: 9.43 

o Mistral-Nemo: 9.80 

Mistral-Nemo excels in relevance and engagement, making it the most engaging and relevant 

in its outputs, while Gemma2 and Llama3.1 are also effective but slightly less so.  

 

Fig 4.2: Evaluation Results – Latency 

Latency: 

• Llama3.1: P50: 622.66s, P99: 700.86s 

• Gemma2: P50: 2388.48s, P99: 2772.30s 

• Mistral-Nemo: P50: 4559.49s, P99: 5265.70s 

Llama3.1 has the shortest latency, followed by Gemma2 and then Mistral-Nemo, indicating 

that Llama3.1 is the fastest in generating responses, with Mistral-Nemo being the slowest. 
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Fig 4.3: Evaluation Results – Token Usage 

Token Usage: 

• Llama3.1: Prompt Tokens: 107,648, Completion Tokens: 36,799, Total Tokens: 144,447 

• Gemma2: Prompt Tokens: 111,872, Completion Tokens: 43,872, Total Tokens: 155,744 

• Mistral-Nemo: Prompt Tokens: 129,475, Completion Tokens: 68,840, Total Tokens: 

198,315 

Llama3.1 uses the fewest tokens overall, which might imply more efficient use of resources 

compared to Gemma2 and Mistral-Nemo. 

Observations: 

• Gemma2 provides the best balance between conciseness, coherence, and engagement but 

is slower and consumes more tokens than Llama3.1. 

• Mistral-Nemo offers superior creativity and narrative complexity as well as the highest 

engagement but at the cost of higher latency and token usage. 

• Llama3.1 excels in performance efficiency with the fastest response times and lower 

token usage but is slightly lower in creativity and complexity compared to Gemma2 and 

Mistral-Nemo. 

Conclusions: 

Llama3.1 is particularly well-suited for use with the procedurally generated quest system due to 

several key advantages: 

• Speed and Efficiency: Llama3.1 has the shortest latency among the models tested, with 

a P50 latency of 622.66s and a P99 latency of 700.86s. This means it generates responses 
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faster than the other models, which is crucial for maintaining a smooth and responsive 

user experience. 

• Resource Efficiency: It uses the fewest total tokens (144,447) compared to Gemma2 and 

Mistral-Nemo. This efficient use of tokens can lead to lower computational costs and 

faster processing, which is advantageous for applications with high token usage or budget 

constraints. 

• Conciseness and Coherence: With a high conciseness-coherence score of 8.82, 

Llama3.1 provides clear and well-organized responses. This is essential for ensuring that 

the procedurally generated quests are easy to follow and understand, enhancing the 

overall quality of the user experience. 

• Good Balance of Relevance and Engagement: Llama3.1 scores 8.73 in relevance and 

engagement, indicating that it generates content that is relevant and engaging, though not 

as high as Mistral-Nemo. Despite this, it still provides satisfactory engagement, which is 

important for maintaining user interest. 

Llama 3.1's primary limitation lies in its relatively low creativity score. However, if processing 

speed is not a critical factor, it may be worthwhile to consider utilizing alternative large 

language models that offer enhanced creative capacities, thereby potentially yielding more 

innovative outputs. 

Overall, Llama3.1 strikes a favourable balance between speed, efficiency, and quality. Its fast 

response times and lower token usage make it an ideal choice. 
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Ethics  

Ethical Considerations 

In the commercialization of this project, several ethical concerns arise. The use of Large 

Language Models (LLMs) to generate narrative content introduces the risk of perpetuating bias 

or inappropriate content embedded within the AI's training data. Since these models are trained 

on vast datasets, including text from a wide range of sources, the generated content may 

unknowingly incorporate harmful stereotypes or unintended biases. As developers, it is our 

responsibility to carefully review and moderate AI-generated narratives to ensure they align 

with ethical storytelling practices, avoiding harmful or offensive material. 

Furthermore, the use of AI for narrative generation could raise questions about the impact on 

human creators. While the tool is designed to assist and augment human creativity, concerns 

may be raised about the potential devaluation of human labor in game design. Clear 

communication is necessary to emphasize that this tool complements, rather than replaces, the 

creative efforts of human developers. 

 

Legal and Copyright Issues 

In terms of legal considerations, the system's reliance on LLMs introduces potential copyright 

challenges. Since generative AI models are trained on datasets that include copyrighted works, 

there is a risk that AI-generated content may inadvertently replicate phrases, plot points, or 

other elements from copyrighted material. This can lead to disputes if the generated content is 

perceived as too similar to existing works. 

To mitigate this, it is important to implement safeguards such as regular review processes to 

ensure that any generated narratives are original and not directly derived from copyrighted 

material. Additionally, if the system is commercialized, it may be necessary to consult legal 

experts to ensure compliance with copyright laws and to address potential liabilities in the use 

of AI-generated content. 

 



 

 

54 

 

Impact of Generative AI on the Project 

Generative AI models used in this project may have been trained on copyrighted materials 

without explicit credit to the authors, which raises ethical concerns. The training data used by 

these models typically includes vast amounts of text from a variety of sources, often without 

explicit permission from the original authors. While the AI-generated content itself may not 

directly reproduce specific copyrighted works, the fact that the model's training process 

involved such material introduces a gray area in terms of intellectual property. 

In this project, the risk is mitigated by using the tool primarily to generate supplementary 

content, such as side quests, rather than the main narrative. Nevertheless, we must remain 

vigilant in reviewing and editing AI-generated content to ensure it does not infringe on 

copyrighted works. Additionally, transparency regarding the use of generative AI and its 

limitations is crucial in communicating the nature of the content to users and stakeholders. 

In conclusion, while this project presents exciting opportunities for enhancing narrative 

development in RPGs, it also requires careful ethical and legal considerations to ensure that the 

tool is used responsibly and that intellectual property rights are respected. 
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Conclusion  
This project set out to develop a Procedural Quest Generation system utilizing Large Language 

Models (LLMs) to improve quest design in role-playing games (RPGs), particularly for smaller 

development teams. Reflecting on the project, several key insights have emerged regarding its 

successes, challenges, and potential for future development. 

One of the primary strengths of the system lies in its ability to generate coherent and narrative-

rich side quests with minimal human intervention. This system provides substantial value to 

smaller game development teams by offering a scalable solution for generating engaging 

narrative content. The use of models such as Llama3.1, Gemma2, and Mistral-Nemo 

demonstrated significant flexibility. While Mistral-Nemo excelled in terms of creativity and 

narrative complexity, Llama3.1 offered superior performance in terms of processing speed and 

resource efficiency, which makes it particularly suited for real-time applications. This ability to 

balance creativity and efficiency allowed the system to meet several key objectives of the 

project, including the generation of immersive side quests that complement human-designed 

main storylines. 

However, the project also faced several limitations. The most notable challenge was in 

achieving the same level of narrative depth and long-term coherence that human-designed 

quests typically offer. While the system performed well in generating short-term quests, more 

complex, multi-stage questlines required significant refinement. Additionally, while the creative 

potential of the LLMs was demonstrated, there remains a trade-off between creativity and 

computational efficiency, particularly when resources are constrained. Addressing this trade-off 

is a key area for improvement. 

In terms of achieving the project’s aims and objectives, the PQG system successfully 

implemented a locally deployed solution and integrated it into the Unity engine. The modular 

design of the system, along with its compatibility with various game engines, provides a strong 

foundation for future expansions. Furthermore, the evaluation process indicated that the system 

effectively produced quests that were coherent, engaging, and aligned with the intended 

narrative goals, thereby fulfilling the project’s primary aim of reducing the burden on 

developers while maintaining high standards of narrative quality. 

Future work should focus on improving the system’s ability to generate more complex, multi-

part questlines and developing mechanisms for creating overarching narrative structures. 

Additionally, efforts should be made to optimize the system’s performance to enhance both 
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creativity and efficiency, particularly in resource-constrained environments. Further expansion 

could also include adapting the system for other narrative-driven game genres or enhancing its 

capacity for procedurally generating character development and dialogue systems. 

In considering the potential commercialization of the project, several steps would be necessary. 

First, refining the user interface to ensure ease of use for non-technical game developers would 

be essential for broad adoption. Offering customizable LLM solutions tailored to specific game 

genres would further increase the tool’s appeal. A cloud-based version, which reduces the need 

for local computational resources, could broaden the system’s accessibility. Additionally, 

positioning the tool as a cost-effective solution for procedural quest generation, particularly for 

smaller studios, would open new commercial opportunities. Collaborating with established 

game development platforms to provide the tool as a plugin could also accelerate adoption and 

ease integration into existing development workflows. 

In conclusion, this project has demonstrated that the use of LLMs for procedural quest 

generation offers substantial potential for reducing the workload on developers while 

maintaining high-quality narrative content. Although there are areas for improvement, 

particularly in terms of narrative complexity and performance optimization, the system has 

proven its value as a scalable solution for automating the creation of dynamic and engaging 

quests. 
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Resources Used  

Assets 

https://assetstore.unity.com/packages/3d/animations/rpg-character-mecanim-animation-pack-

free-65284 

https://assetstore.unity.com/packages/vfx/shaders/free-skybox-extended-shader-107400 

https://assetstore.unity.com/packages/2d/gui/icons/food-icons-pack-70018 

https://assetstore.unity.com/packages/3d/props/food/low-poly-fruit-pickups-98135 

https://assetstore.unity.com/packages/2d/gui/icons/pixel-cursors-109256 

https://assetstore.unity.com/packages/3d/environments/fantasy/polygon-fantasy-kingdom-low-

poly-3d-art-by-synty-164532 

https://assetstore.unity.com/packages/vfx/particles/simple-fx-cartoon-particles-67834 

https://assetstore.unity.com/packages/2d/gui/icons/universal-bronze-icon-pack-120654 

Udemy Course Series for Quest Framework 

https://www.udemy.com/course/unityrpg/ 

https://www.udemy.com/course/unityinventory/ 

https://www.udemy.com/course/unity-dialogue-quests/ 

Software Resources 

ChatGPT for editing and proofreading. Accessed: https://chatgpt.com/ 

Evaluation Data https://chatgpt.com/share/a0d3a713-7940-4460-8675-68daeda1aa72 

DocuWriter.ai for documentation assistance. Accessed: https://www.docuwriter.ai/ 

PlayHT for voice generation (for Demo Video). Accessed: https://play.ht/ 
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